等差数列与等比数列内容预览:第1课时等差数列与等比数列要点疑点考点1.等差(比)数列的定义如果一个数列从第二项起,每一项与它的前一项的差(比)等于同一个常数,这个数列叫做等差(比)数列.2.通项公式等差an=a1+(n-1)d,等比an=a1qn-14.重要性质:特别地m+n=2pam+an=2ap(等差数列)aman=a2p(等比数列)返回课前热身31DB4.等比数列{an}中,a4+a6=3,则a5(a3+2a5+a7)=_________5.在等差数列{an}中,若a4+a6+a8+a10+a12=120,则2a10-a12的值为()A.20 B.22 C.24 D.28C9返回能力思维方法【解题回顾】本题是利用等差数列、等比数列的条件设未知数,充分分析题设条件中量与量的关系,从而确定运用哪些条件设未知数,哪些条件列方程是解这类问题的关键所在.1.四个正数成等差数列,若顺次加上2,4,8,15后成等比数列,求原数列的四个数.2.{an}是等差数列,且a1-a4-a8-a12+a15=2,求a3+a13的值.【解题回顾】本题若用通项公式将各项转化成a1、d关系后再求,也是可行的,但运算量较大.【解题回顾】本题将函数、不等式穿插到数列中考查,用到了数学中重要的思想方法.返回【解题回顾】本题对sin2a2降次非常关键,不宜盲目积化和差4.若a1,a2,a等差数列与等比数列a12+a15=2,求a3+a13的值.【解题回顾】本题若用通项公式将各项转化成a1、d关系后再求,也是可行的,但运算量较大.【解题回顾】本题将函数、不等式穿插到数列中考查,用到了数学中重要的思想方法.返回【解题回顾】本题对sin2a2降次非常关键,不宜盲目积化和差4.若a1,a2,a3成等差数列,公差为d;sina1,sina2,sina3成等比数
课件关键字:等比数列,等差数列,数列
上一课件: 对数函数的图像与性质 下一课件: 对称问题ppt
下载说明